Mixed Type Nondifferentiable Higher-Order Symmetric Duality over Cones
نویسندگان
چکیده
منابع مشابه
On Nondifferentiable Higher-Order Symmetric Duality in Multiobjective Programming Involving Cones
In this paper, we point out some deficiencies in a recent paper (Lee and Kim in J. Nonlinear Convex Anal. 13:599–614, 2012), and we establish strong duality and converse duality theorems for two types of nondifferentiable higher-order symmetric duals multiobjective programming involving cones.
متن کاملGeneralized Second-Order Mixed Symmetric Duality in Nondifferentiable Mathematical Programming
and Applied Analysis 3 It can be easily seen that for a compact convex set C, y is in NC x if and only if S y | C xy, or equivalently, x is in ∂S y | C . Definition 2.2. A functional F : X × X × R → R where X ⊆ R is sublinear with respect to the third variable if for all x, u ∈ X ×X, i F x, u; a1 a2 ≤ F x, u; a1 F x, u; a2 for all a1, a2 ∈ R, ii F x, u;αa αF x, u; a , for all α ∈ R and for all ...
متن کاملNondifferentiable Second-order Minimax Mixed Integer Symmetric Duality
In this paper, a pair of Wolfe type nondifferentiable second order symmetric minimax mixed integer dual problems is formulated. Symmetric and self-duality theorems are established under η1bonvexity/η2-boncavity assumptions. Several known results are obtained as special cases. Examples of such primal and dual problems are also given.
متن کاملSymmetric duality for a higher-order nondifferentiable multiobjective programming problem
*Correspondence: [email protected] 1Department of Mathematics, Indian Institute of Technology, Roorkee, 247 667, India Full list of author information is available at the end of the article Abstract In this paper, a pair of Wolfe type higher-order nondifferentiable symmetric dual programs over arbitrary cones has been studied and then well-suited duality relations have been established consider...
متن کاملNote on Mond-Weir type nondifferentiable second order symmetric duality
In this paper, we point out some inconsistencies in the earlier work of Ahmad and Husain (Appl. Math. Lett. 18, 721–728, 2005), and present the correct forms of their strong and converse duality theorems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym12020274